NASA Technical Memorandum 100573

THE ENVIRONMENT FOR APPLICATION SOFTWARE
INTEGRATION AND EXECUTION (EASIE) VERSION 1.0
VOLUME I

EXECUTIVE OVERVIEW

LAWRENCE F. ROWELL
JOHN S. DAVIS

MARCH 1989

(2A5A-TB-100573) 9TEE EMVIECHMEERT FOR
AEPLICATICK SCFIhIFE 1M EGEATIC) AMD
EXECUTICN (EASIE) VEESICN 1.G. S¥CIUBE 1:
EXECUIIVE OVEBVIER (BASA) &1 ¢ CSCL (095

NASN

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

63,61

N89-21£38

Unclas
C1968€E43

PREFACE

The Environment for Application Software Integration and
Execution (EASIE) provides both a methodology and a set of
software wutility programs to ease the task of <coordinating
engineering design and analysis codes. The need for such
techniques and tools has stemmed from the computer-aided design
and engineering activities within Langley Research Center's Space
Systems DNivision (SSN). In SSD, the Vehicle Analysis Branch
(VAB), with emphasis on advanced transportation systems, and the
Spacecraft Analysis Branch (SAB), with emphasis on advanced
spacecraft, share a common need to integrate many stand-alone
engineering analysis programs into coordinated, quick-turnaround,
user-friendly design systems. In particular, the most needed
capabilities include easy selection of application programs,
quick review and modification of program input/output data, and
ability to 1l1og the actual steps that were executed during a
study. Although the application programs used by VAB and SAB
differ, the design methods used by their engineers are quite
similar, and great efficiency can be gained by providing a
computer environment with the capahilities mentioned above.

FASIE is a user interface and set of utility programs which
supports rapid integration and execution of programs about a
central relational database. In general, the FASIE system
addresses the needs of four different classes of people who will

be involved in the development of an engineering design system.

Certain individuals may serve in more than one of these roles,
hut the following terms will help to clarify several distinct
activities associated with the EASIE system.

The first <c¢lassification represents the engineer/designer/
analyst. This group conducts the design study by executing
modeling and analysis programs and generating data required to
evaluate the design against its objectives. FEASIE documentation
will refer to this group as EASIE system users or, more often, as
users. In general, these users are only interested in executing
programs already installed into an EASIE design system.

A second group aided by EASIE 1is identified as application
programmers, These programmers are responsible for the
development and improvement of modeling and analysis programs
used in the engineering design process. They are the experts
with respect to particular application programs who can define
the input and output wvariables. This must be done before
inclusion of that program with others into the integrated
system.

The third group is identified as program implementers, since
their function 1is to provide an environment where all the
software tools work together with a minimum of effort. These
people will use information provided by the application
progranmmers and will install or modify the programs in an EASIE
system by creating appropriate data constructs in the database
and locating files where needed by the EASIE executive.

The fourth classification is design team leader or design

manager. This is the individual or group responsible for

ii

identifying parameters important to the design study and for
confiquration management of the data as it is produced by the
design team. This design manager must have an overview of the
total data requirements for the analysis process and the foremost
concern for the integrity of the data.

With these terms defined, the four volumes of EASIE
documentation can be associated with the groups most likely to
use them. FEach of the volumes addresses different aspects of the
support tools, and each is intended to be independent of the
others.

Volume I, EXECUTIVE OVERVIEW, provides information about the
functions, concepts, and historical development of EASIE and
should be read by anyone trying to determine if EASIE would be
heneficial to his or her work.

Volume II, PROGRAM INTEGRATION GUIDE, describes the portion
of the EASIE tools supporting both the integration of application
programs into a central database and the definition of the data
dictionary used during data review and modification. This volume
will be used primarily by the program implementer and the design
manager in their responsibilities for the actual installation of
appropriate programs into a fully <integrated design system.
However, the application programmer may also use tools described
in this volume to assist in the documentation of input/output
variables for the application progranm.

Volume ITI, PROGRAM EXECUTION GUINE, describes the portion
of the EASIE tools supporting the selection and execution of

application progranms, building of menus, and editing of programn

i

data. This volume will be of foremost importance to the
engineer/designer/analyst who will perform design studies. In
addition, the program 1implementers will find the sections
concerning the construction of application-dependent procedures
he]pfg]. Finally, this document will also be wused by design
mépéﬁérs for reviewing data and design activities.

///‘ Volume IV, SYSTEM INSTALLATION AND MAINTENANCE GUIDE,
descrihes the procedure of loading the EASIE system onto a
computer, It also gives some insight into the hardware and
software dependencies of the EASIE code. This, most likely, will
be needed by the program implementer for familiarization with the
directory structure and location of the various EASIE
components. Although the design of EASIE is intended to reduce
the system dependencies, this version nevertheless reflects in
several ways the current implementation wusing the Relational

Information Management (RIM*) database management system and the

VAX/VMS' operating system.

* Trademark of Boeing Computer Services

* Trademark of the Digital Equipment Corporation

ORIGINAL PAGE |s

o OF POOR QUALITY

TABLE OF CONTENTS

Section Page

PREFACE...-..I.............l...........Q...‘.ll.......l..-.i

LIST OF TABLES.................l..........................vi
LIST OF FIGURES....'........l.......‘............I........vi

INTRODUCTION.-..-. o-o--oc..-..ooo.o-ooooooo-.o-o.a-o-.l

o
*

BACKGROUND..-.......----00...‘-.O....0................0...-

2
THE EASIE PROGRAM APPROACHQ....--...-.aouooo..-...o...o...04
9

THE EASIE FUNCTIONS...ccccceccccecccccncccscscocnsccsccnsnnss
Dictionary - Data Definition....cccccceccescccacccccoceced
Schema - Data Structure.....ccceececcccesocsccsncscsncccall
Template - Data SelectioN..ccceccccconcsacacccassccaonesal?
REVIEWER - Data Manipulation....ccececeececscacacsacnssalld
Executive - Program Execution.....cceeeceecccecsccccaacassld

]
BWN=O (=] (=} (=]

THE EASIE PROCESS.........'......................I......-.18

CURRENT APPLICATIONS...cccieeiiccenccccancccsanscnns ceesea20
COMPUTERS AND SOFTWARE....ccccveeeeee ceccecacsccnncs Y 4

[=-] ~ -] " i w N
. []
(=] o o @

SU"MARY..-.....ooll..oo....o.oa..Q..Oo...lc......n...o.-..24

REFERENCES..................I.............................33

Table

Il

Figure

10

11

LIST OF TABLES
Page
EASIE Integration Processor FunctionS...cccececccces ee2b

EASIE Execution Processor FUNCtioONS.c.ccecccccccncecceaalDd

LIST OF FIGURES

_Page
Program Integration Techniques...... ceecrsescscscscacs .26
Program Interfacing TechniquesS...ccceeceeccccccccncccsalb
EASIE Coding FOPM. ...t encceccoccesncccncccancsncncasa 27
REVIEWER Display of Parametric Data.......ccceeceeesece?8
REVIEWER Nisplay of Attribute Nata..c.cccccccccccccccea28
The Integration Environment....cccceccecencenccnce eeea?9
The Execution Environment....... csectcseccrcsscsccncna 30
Main Executive Menu......cccceeeeecceccecacccascnsnneasaall
Example LOog File.ceeeeeeoecocceccosacosnancssacssannnaall

Concept for the Aerospace Vehicle Interactive Design
(AVID) SystemI..................00050032

The Interactive Design and Evaluation of Advanced
Spacecraft (IDEAS) Systeme..cicececes cesecsecs .32

Vi

1.0 INTRODUCTION

The increasing complexity of today's aerospace vehicles
requires ever more sophisticated design approaches and analysis
techniques which can only be realized by computer-aided
engineering systems. In order to accomplish the many iterations
required of the designer, these complex analysis codes must be
coordinated to provide user-friendly, quick-turnaround, computer-
hased design systems. The Environment for Application Software
Integration and Execution (EASIE) provides a methodology and set
of utility routines for a design team to build, maintain, and
apply computer-aided design systems consisting of large numbers
of diverse, stand-alone analysis codes. The EASIE approach uses
a central database containing all the wvariables (the data
dictionary) needed as inputs to the analysis programs that will
make up the integrated system. Utilities exist for constructing
the data dictionary and database schema, generating the
subroutines to read from or write to the database, incorporating
the analysis programs into the database, interactively reviewing
and modifying values in the database, incorporating the analysis
programs into an interactive executive for selection and
execution, building menus and procedures to assist the wuser,
logging activities of the analyst, and managing the data
confiqurations that evolve during the design process. This
document gives an overview of the functions provided by FASIE and
descrihes their use. Three operational design systems based upon

the EASIE software are briefly described.

2.0 BACKGROUND

Over the past 25 years, the application of computers in
engineering has increased exponentially. Today, many steps 1in
engineering design and analysis can now be completed in hours
that ten years ago would have taken weeks to accomplish. As the
computer environment (processors, support software, workstations,
communications) has increased in capability, so have the analysis
techniques and programs for the engineering disciplines.
However, this growth has not been without a price. While
information may be obtained at a faster rate and in greater
abundance, the absence of standardization and lack of
coordination among software developers have resulted in the
proliferation of computer programs that are unahle to communicate
data easily to other programs. The result is often the manual
transfer of data from one program to another with the associated
manpower loss, time delay, and potential error introduction.
Therefaore, the efficiency with which design studies can be
accomplished is often more dependent on the coordination of the
analysis programs and their data interchange requirements than on
the processing speed of the computer system.

In typical design and engineering studies, use will be made
of both commercially and in-house developed programs, so that the
purchase of integrated analysis tools still leaves at issue the
coordinaton of the commercial database with the local programs.
This problem is particularly acute for conceptual design studies
which are often characterized by advanced technologies requiring

new analysis codes and by numerous competing configurations

requiring many analysis iterations and refinements. The constant
change in design methods does not allow the system tools to reach
the maturity that is possible in production situations.

The Space Systems Division (SSD) at NASA's Langley Research
Center (LaRC) has been addressing this problem area since the
early 1970's. In SSD, the Vehicle Analysis Branch (VAB), with
emphasis on advanced transportation systems, and the Spacecraft
Analysis Branch (SAB), with emphasis on advanced spacecraft,
share a common need to integrate many stand-alone engineering
dnalysis programs into coordinated, quick-turnaround, wuser-
friendly design systems. In particular, the most needed
capabilities include easy selection of application programs,
quick review and modification of program input/output data, and
ability to 1log the actual steps executed during a study.
Although the application programs used by VAB and SAB differ, the
design methods used by their engineers are quite similar, and
great efficiencies <can be gained by providing a computer
environment that yields the capabilities mentioned above.

Withite [1] described the development history of several
integrated design systems used for launch vehicle design and gave
an overview of the capabilities needed in future enhancements.
The Environment for Application Software Integration and
Fxecution, FASIE, implements these needed <capahilities and
provides hoth a methodology and a set of software utility
programs to ease the task of coordinating engineering design and
analysis codes. EASIE consists of a user interface and a set of
utility programs which support rapid integration and execution of

programs about a central relational database.

L

b

, !

3.0 THE EASIE PROGRAM APPROACH

The purpose of the EASIE is to aid in the complex task of
integrating a collection of application programs into a single
system. The tools offer a program integration approach critical
in defining and forming the data paths for inter-program
commGnication. Although the acronym EASIE implies simplicity,

Ebé'prob1ems encountered when integrating two or more programs

,/%re often formidable. Consequently, the potential EASIE user

should anticipate a relatively high learning curve upon initial
exposure to the database management system (DBMS) terminology and
software tools. However, one of the principal advantages of
using the EASIE tools is that once the initial learning curve is
climbed, the learned program integration techniques are
applicable to other programs or sets of programs.

In addition to understanding program integration problems
(addressed below), some experience with DBMS terminology and
techniques 1is necessary. In particular, the EASIE tools rely
heavily on the techniques of the relational approach to NDBMS such
as those described by C. J. Date [2]. More specifically, the
current version of the EASIE tools is built in FORTRAN 77 based
upon the Relational Information Management [3] (RIM)* DBMS

application program interface and executes on Digital Equipment

Corporation VAX* computers.

* A trademark of Boeing Computer Services

+ A trademark of the Digital Equipment Corporation

ORIGINAL PAGE |5
OF POOR QUALTY

A generalization of current program coupling techniques is
given to show the basis for the EASIE program approach. There
are a number of techniques currently being wused to couple
independent analysis programs into design systems, and these are
generalized here in four categories: close-coupled integration,
loose-coupled integration, close-coupled interfacing, and
loose-coupled interfacing. The integration technique uses direct
communication between a program and a central datahase or another
program. Interfacing means indirect data communication among
programs that operate in the normal input-output file mode using
intermediary programs to properly format the data.
Close-coupling means that the path through the analysis
techniques or programs is fixed. With loose-coupling, the
programs can be individually executed, or execution paths can bhe
programmed.

Close-coupled integration (Figure la) is analogous to one
large program where the analysis 1is performed by modules
(subroutines, segments, or overlays) and data transfer s
accomplished by global common and data files. The advantage of
close-coupled integration is the speed of execution because data
communication is direct. The disadvantages of <close-coupled
systems are, first, the difficulties of integrating all the
separate analysis codes into one computer program and, second, of
adapting to unique configurations requiring new analysis
techniques bhecause these techniques are deeply rooted into the
program and are not easily changed, Loose-coupled integration
(Figure 1b) dis the technique employed by most business-oriented

systems today. A central database management system is used for

data communication to all the separate programs. The main
advantage of loose-coupled integration 1is that the programs
(analysis techniques) can be developed independently and can
lTater be coupled together to form a complete design system. The
disadvantage of the 1loose-coupled integration is that these
programs must be written to communicate with the datahase either
initially when the program is developed or later after completion
of the progranm. For a program that has been developed
independently of any database considerations and has a large data
input with many analysis options, it is an awesome task to
integrate the database communication code into the program unless
some support tools and automated procedures are developed to
simplify the task.

Close-coupled interfacing (Figure 2a) is one of the first
techniques used for coupling independent analysis programs. The
interfacing starts with the coupling of one program to another by
having the first program write an input file for the next progran
that is ididentical to the input file the program used hefore
coupling, This process is repeated from program to program and
eventually creates a network of closely coupled analysis programs
that comprise a design system. As the network of programs grows,
it becomes more and more difficult to couple new programs into
the system, A new program may require input from several
programs that are not directly linked. A separate program,
called an intermediary program, must be written to read the
output of several programs and create an input file for this new

analysis program. Because of this problem of decentralized

information and because the path of the analysis is predefined by
the program network, the current approach is to centralize the
data. Loose-coupled interfacing (Figure 2b) uses a central
database as a repository of data, but a pre-processor program
must be written to retrieve, transform, and format the data into
an input file that the program expected before coupling. After
program execution, analysis results are written to the database
by adding database code to the analysis program or by creating a
post-processor to read output files and place appropriate data iH'
the database. The advantage of interfacing with a pre-processor
program is that it requires no knowledge of the internal coding
of the analysis program and can be used when program source code
is not available as with many commercial progranms. Only the
program 1input requirements are needed which are usually well
documented. The disadvantages of interfacing are that a pre-
processor program must be written for each analysis program and
that there is computer overhead for writing an input file and
reading that file by the analysis program,

Loose-coupled integration has been selected as the approach
of choice, but it should be noted that the EASIE tools will
equally support loonse-coupled integration and Tloose-coupled
interfacing requirements. The advantages of Toose-coupling
are: (1) the ease of idincorporating new programs by wusing a
central database for communication:; (2) analysis programs can be
executed as needed to aid the design process, or several can be
executed for multidiscipline analyses; and (3) depth of analysis

can be changed as the configuration matures. The system

architecture represented by Figure 1(b) also allows the
development of a single, standard data editor/reviewer when
appropriate constructs are created. Once programs are
satisfactorily inteqrated around a common database, a flexibhle
method is needed for interactively accessing the chosen program,
gaini?d‘help information on demand, reviewing and modifying the
/}pﬂﬁ? data, executing the program, and examining the results.
/iffhese activities can obviously be performed within the computer
operating system by using its native command Jlanguage and
editors, but such an approach does not offer any guidance to the
designer, nor does it provide any specific framework for creating
or tracking design procedures, i.e., sequences of progranm
executions intended to optimize or iteratively arrive at a design
goal. Again, the EASIE tools provide a powerful and flexible
executive which presents the wuser a viewpoint within the
integrated design system where either menus or a simple command
language can perform activities typical in design studies.
Section 4 describes the functions provided by the EASIE

tools to enable construction of 1loose-coupled integrated

systems of programs, a common editor, and a powerful executive.

ORIGINAL PAGE [
OF POOR QuALITY

4.0. THE EASIE FUNCTIONS

This section briefly describes the capabilities that must be
provided by support software if it is to fill the need for
efficient database definition, program integration, and program
execution, The following discussion of the capabilities will
assume that a central database will be used to store information
for the design activity and to communicate data among programs.
Although computer data files are often used instead of database
management systems (NDBMS) to interface programs, these do not
provide the versatility of the DBMS approach utilized by EASIE.

In order to describe how EASIE tools have been implemented
to meet the needs examined in section 3, some concepts must be
described. As each term or concept is discussed, its role in the

EASIE system will be explained.

4.1 Dictionary - Data Definition

The EASIE database serves not only as a repository for the
value of a variable, but it also contains essential descriptive
information about the variable in the form of a data
dictionary. Specifically, the data dictionary contains the
variahle name, its engineering units, a display format, a textual
definition, and certain language-specific characteristics needed
to support data input and output for any particular language
(FORTRAN, Pascal, etc.). This information, placed in the
database during its construction, can be called on whenever a
variable 1is being reviewed for modification. In addition,

information contained in the data dictionary 1is critical when

deciding upon the similarity of variables required by two
different programs. This data dictionary structure is one of the
key features of EASIE and is integral in providing many functions
described later.

The information required for the data dictionary usually can
only be provided by the program experts, or application
programmers who are intimately familiar with the codes being
integrated or interfaced. Although there are no shortcuts to
this step in the integration process, aids have been devised to
quide the application programmers in developing this
information. An EASIE coding form, Figure 3, provides a simple
and orderly vehicle for the collection and recording of the
information on each variable that is needed to build the data
dictionary. Also, an interactive dictionary-building processor,
which prompts for the variable information, may be used by the
program implementer during the actual creation of the database

architecture or schema.

4.2 Schema - Data Structure

Minimally, for each program that is integrated into the
database, all program 1dinput variabhles and any program output
variables to be shared with other programs must be described in
the data dictionary. It is acceptable, but unnecessary, to
describe unshared output variables in the data dictionary for
future uses. The program implementer, using information provided
by the applications programmers, 1is responsible for 1logically

grouping the identified data dictionary variabhles into relations

10

or tables which collectively are called the schema. The schema
is simply the architecture of the total database. The relation
is a DBMS term referring to a construct in the database. No
further discussion of relations or schema need he given here, but
more information can be obtained from the RIM documentation [3]
or EASIE Volume II [4]. The importance of the program
implementer in identifying and systematically grouping variables
into relations for the data dictionary cannot be overemphasized,

since this greatly influences the ease of maintenance of the~
database. Therefore, the program implementer should have a
thorough knowledge of the program to be integrated and the other
programs already integrated into the system. No software tools
can substitute for this knowledge, but an interactive menu-driven
processor, called MAKNDICT, is the dictionary builder provided to
aid the program implementer in the actual construction of the
data dictionary. The facilities of MAKDICT are detailed in
reference [4], and Table I provides a summary of its functions.
The MAKDICT functions supporting the dictionary-building activity
are: build relations (BR), add variables to a relation (AR),
build a database schema dump (BS), list relations (LR), and print
a relation (PR). Also, MAKDICT functions are used to connect
each program to the database by generating appropriate database
read and write routines for the specific variables required by
each program and to provide wutilities for data review and
modification. The method of identifying which variables in the
database are needed by each program leads to the concept of a

data template.

11

4.3 Template - Data Selection

Once the data dictionary has been constructed for all
variables of interest, a means must be provided to specify which
variables 1in the database are to be associated with any
particular program, Obviously, variables may be inputs and/or
outputs for more than one program. The relationships between

programs and their input and output variables are described by a

7

/4f/ftemp1ate. A program input template is simply a list of the input

variables {actually, both the variable name and the relation in
which it is stored) that are required for a particular program.
Likewise, a program output template is a list of the outputs
(variable names and relations) which are to be inserted into the
database by a particular program. These templates, once built,
are associated by name with the particular application program to
which they relate. This concept of program input and output
templates enables the development of a single generic interactive
editor which can display the input or output variables for any
selected program simply by requesting the appropriate template.
The full set of data dictionary information is presented by this
editor, known as the REVIEWER and described in section 4.4, In
addition, these templates enable the automatic generation of
FORTRAN subroutine source code by the FORMATTER processor. The
generated code is placed in each program to retrieve data from or
store data 1into the database during program execution. The
MAKDICT functions supporting the creation and printing of the
templates and the generation of the FORMATTER subroutines are:

build a template (BT), list a template (LT), print a template

12 CRrIGIAL PAGE IS
OF POOR QUALITY

(PT), and build FORMATTER subroutines (BF). There are times when
selected sets of variables in the database will bhe of interest,
and they are unrelated to any particular program. Templates can
be built that group any set of variahles tongether to define any

view of the database of interest for observation or transfer.

4.4 REVIEWER - Data Manipulation

To this point, means have been described for constructing a
database structure, the associated data dictionary, and
templates. Obviously, the engineer preparing to execute an
analysis program is primarily interested in reviewing and editing
the set of data inputs for his program and reviewing the program
output results of his study. For this purpose, a data REVIEWER
has been provided. The REVIEWER program is an interactive editor
that presents a standard display, regardless of the application
“(analysis) program being run, which expedites the 1learning
process. This standard display is accomplished because of the
existence of the information contained in the templates and data
dictionary. When running the REVIEWER, a template 1is chosen
identifying the group of variables to be displayed. The REVIEWER
then displays, from the data dictionary, the present value, name,
subscript, description, and units for each variable retrieved
from the database. Both parametric data and data tables can be
contained in the database. The REVIEWER will display data either
in 1list form (Figure 4) or tabular form (Figure 5) as
appropriate. The display of variables can be stepped page by
page and modified. A subset of a template's variables can be

defined to reduce the list of variables displayed. The REVIEWER

13

is a program separate from the MAKDICT processor; however, the
Build REVIEWER Input file (BRV) function of MAKDICT has been
designed to expedite the execution of the REVIEWER. The BRYV
function creates a file containing the information needed to
display on a specified template. This avoids the overhead of
retrieving the information during the actual REVIEWER process. A
detailed discussion of the functions provided by the REVIEWER is

presented in the EASIE Volume I1 [4].

4.5 Executive - Program Execution

The tools described so far, i.e., the ten functions of
MAKDICT and the REVIEWER, provide the foundation for efficient
integration of analysis programs. This section will describe the
execution environment (processor and subprocessors) for
conducting multidisciplinary design studies.

The execution environment, as distinguished from the
integration environment, is directed primarily to the use of
analysis programs and must provide several services. FExamples of
these services include listing the analysis programs available,
reviewing input and output data, selecting a particular version
of the database reflecting the model of interest at that time,
and designing sequences of program runs that accomplish a
specific task. Whereas the integration environment (Figure 6)
provides tools to integrate programs [4], the execution
environment (Figure 7) provides tools to define and execute
design studies [5]. The engineer using the executive need not

know anything about the initial integration process.

14

The execution processor is both menu and command driven.
Menus assist the beginner while commands are more efficient for
the more knowledgeable user. The executive provides functions
that track both the past activities of the designer and the state
of the current design. For example, the state of the current
design activity is summarized by the status area on the executive
display (Figure 8) indicating which application program,
template, database version (configuration), and design procedure
are being used for the current design task. Additionally, these
status values serve as the default values for future commands.
These values, as well as a log of past commands and other
pertinent information, c¢can be retained in what is called a
workspace so that a study may be interrupted, the workspace
saved, and the study returned to the breakpoint, days or even
weeks after the interruption.

In figure 8, the section entitled PERMANENT MENU summarizes
the commands that can be executed from any level within the
executive. These include a 1listing of data configurations,

templates, workspaces, application programs, or procedures.

Functions are provided for executing the following: issuing
operating system commands from within EASIE, adding comments to
the log file for marking noteworthy events, altering the menu
display, and leaving EASIE. The last section, entitled UTILITY
SELECTION, lists the major subprocessors (separate menus)

provided by the executive.

A typical design activity, whether computer-aided or not,
involves several identifiable steps. The first is definition of

engineering data descriptive of an initial model of the system

15

under study, whether it be a structural analysis model (e.g.,
geometry or material properties) or electrical subsystem design
(e.g., power requirements or parts list). The analysis that is
applied to the model usually leads in successive steps to an
improved design that may be substantially different from the
original model. To track these steps, important versions or
configurations of the model must be saved. Using EASIE, this is
done by making a copy of the database that contains the
configuration. Then, future design changes are applied to a copy
of the database while tleaving the desired benchmark database
intact. Thus, numerous versions of a database, descriptive of
different design paths, may be developed. Fach wuser s
responsible for maintaining his own database. The executive
makes available to all users common items such as the application
programs, input/output templates, and master databases. A master
is a copy-only version of a database used as starting points for
design.

Different designers working with the same model may have
different interests. For example, an aerodynamicist may pursue
wing/body design while a <control system designer may be
developing control strategies. Fach would begin with a copy of
an approved master database containing a common configuration,
and each would modify his personal database copy as design needs
dictated. As the design progresses, some design changes may be
sanctioned by the design manager and new master databases

established for the next phase in the iterative design process.

16

Because the sequence of programs wused successfully to
conduct a study is likely to be applied again to new versions of
the database, the EASIE executive processor allows the creation
of procedures which contain the commands needed to execute the
sequence. These procedures can be built directly by entering a
line for each command, or they can be derived from the activity
log (Figure 9) which is kept during operation of the executive.
Thus, a designer, who has by trial and error arrived at an
effective design sequence, can review the 1log and select the
steps to repeat the desired sequence of commands and then produce
a procedure directly from the log. The log also serves as a
means to track the design as it develops and thereby can help
resolve questions that might arise at a later time.

The procedure-building capability provided by the executive
can be used to create very sophisticated sequences which can
issue prompts or menus and do conditional branching based on the
responses. These automatic procedures will often be created by
experienced engineers who wish to estahlish specific design steps
“to be followed by a Jless-experienced person. Thus, certain
question and answer scenarios can be built into a procedure to

quide a novice.

17

5.0 THE EASIE PROCESS

A typical scenario can now be described which summarizes the
application of the EASIE functions to create and use a new
integrated or interfaced system of programs. The function codes
in tables 1 and II will be used to represent the functions
performed in the integration and executive processors.

The first step in the EASIE process is for the program
experts to define the data dictionary information (all inputs and
outputs needed by other programs or selected for database
storage) by completing the EASIE coding form. The second step is
to enter this information into the database using the integration
functions BR, AR, LR, and PR to define the data dictionary
including the appropriate grouping or relations. Next, the
actual database schema will he produced using the function code
RS. Each program will be related to the database information by
creating a template for its input list and its output list using
functions BT, LT, and PT. The actual connection between the
programs and the database can now be made using the function BF
to generate subroutines to read from and write to the database.
The input subroutines must be added to the application programs
replacing any previous input method such as input files or
namelist [/0. This requires a manual operation for which
guidelines are provided [4]. Output subroutines can co-exist
with any previous output methods employed. If no source code is
available for the program being added to the system, then
interfacing rather than integrating will be required. The

subroutines generated by FASIE can be used in the pre- and post-

18

processing programs. To enable the use of the REVIEWER, the BRV
function must be executed to generate the file of database
addresses for each variable.

Throughout this process the EASIE interactive processors
prompt for descriptions on each element (template, program)
created, and this information provides help to the eventual
users. The steps just described may take a few hours for a
simple system or months for a complex system which requires a
great deal of preparation by the program experts and project
manager to define the data dictionary and agree on the
appropriate way to group variables. In either case, the EASIE
tools provide an efficient and systematic means of producing the
needed software elements and tracking the buildup of the
application system with the variables, programs, and directories.

Once these steps have been completed, the system will be
exercised using the executive functions, and a master database
will be created which is representative of some baseline
confiqguration with all default values defined. This read-only
database will be the bhasis for standard test cases whenever
computer operating system or EASIE software is updated and will
he the point of departure for individual analysts to begin their
optimization or trade studies. The experienced analyst may
choose the functions PBLD and PREX to develop his own procedures
or to create for Jjunior engineers some predetermined progran
execution procedure which has a very narrow study focus.
Typically, the APEX, DATA, TBLD, and WSC functions will be used

to select programs, edit data, review output, and maintain

databases and work progress.

19

6.0 CURRENT APPLICATIONS

The EASIE software serves, to various degrees, as the
framework for several developing design systems at LaRC. The
degree to which EASIE has been used depends primarily on the
maturity of these tools at the time the design system was being
constructed.

The Aerospace Vehicle Interactive Design (AVID) System [1],
for conceptual design of launch vehicles, is depicted in Figure
10. This fiqure represents more of a goal than the current
status of the system. Several pieces have been interfaced, but
in fact, the difficulties originally encountered in this task
formed the basis for the EASIE specifications. Now that EASIE is
operational, activities are underway to complete the AVID system.

The LaRC Interactive DNesign and Evaluation of Advanced
Spacecraft (INDEAS) System (Figure 11) was developed initially
using early vintage integration tools, but it has now been
implemented in EASIE using the integration processor. That is,
the database has been constructed and programs integrated for
data exchange via EASIE, but the -executive has not been
applied. This is because the original INDEAS programs were all
highly interactive, and the benefits derived by conversion to the
REVIEWER <could not outweigh the labor required. However, new
programs implemented into the system will anticipate using the
full capabilities of EASIE. As a side note, it should be stated
that within most integrated systems and with EASIE in particular,

batch programs are more desirable and efficient than interactive

progranms.

20N

The previous two examples, AVID and IDEAS, represent a
substantial investment in analysis codes and a significant
requirement for maintenance and improvement. This latter fact
has led to the acquisition of commercial software wherever the
capabilities and reliability of such software will support the
LaRC design needs. This presents a new problem in that locally
developed software, which allows a fast response to specific
design 1issues, must be somehow <coordinated with a vendor's
product. .This'problem was addressed when early space station
study requirements at LaRC 1led to the acquisition of the
Structural Nynamics Research Corporation (SDRC) Integrated Nesign
and Engineering Analysis Software (I-DEASB) [6]. It was
desirable to coordinate several programs from the NASA IDEAS
system with the solid modeling and finite element modeling tools
within SDRC's [I-DEAS. The product that resulted, known as
IDEAS**2 (IDEAS Squared), has been implemented by using the EASIE
utilities to attach the NASA programs to the commercial I-DEAS
package, The advantage to such an approach is that LaRC can
exercise some latitude to expand the number of locally developed
programs integrated into the system and thereby achieve study
goals 1in a short time without waiting for the marketplace to
warrant the commercial development of each analysis code
required. The INDEAS**2 software 1is being used by the Space
Station Program: at Reston, Virginia, and versions of it exist

also at LaRC and the Johnson Space Center.

® 1-DEAS is a trademark of Structural Dynamics Research Corp.

21

7.0 COMPUTERS AND SOFTWARE

EASIE, Version 1.0, was developed on a VAX 11/785 under the
VMS operating system and uses the RIM software as its DBMS. A1l
of the EASIE software is written in FORTRAN, The data dictionary
assumes variables to be FORTRAN and will ask for certain FORTRAN
characteristics such as variable type (real, integer, character)
and array dimensions. Also, the FORMATTER produces FORTRAN
subroutine code for accessing the database variables. There is
no reason inherent in the EASIE design that requires FORTRAN;:
however, this version's implementation reflects the fact that the
analysis programs and DBMS of interest were all FORTRAN.

Likewise, the architecture of the EASIE user interfaces has
been designed, as much as possible, to be independent of the DBMS
software. The database management system used initially was A
Relational Information System (ARIS) developed at LaRC. However,
the need for more widely available DBMS software led to the
selection of RIM [3]. Currently, many of the EASIE tools have
been used to add capabilites to the NASA IDEAS**2 system. Thus,
capabilities exist to support the Project Relational Language
(PRL) of the SDRC I-DEAS.

The unavoidable need to organize the programs, templates,
and data areas that accompany an architecture such as EASIE's has
led to the definition of a particular hierarchical file structure
on the VAX/VMS system. This structure [7], although not
required, has provided a very efficient and readable framework
for locating software components as they are integrated. In
addition, these structures also assist the installation of the

EASIE system onto a new host computer.

22

As a final note, the existence of RIM on the CDC Cyber
series of computers has opened the possibility of placing EASIE
on the Cybers. An option, not fully tested, has been provided to
handle the word length differences between the Cyber architecture
and that of PRIME or VAX. Greater details on the consequences of
changing either the host computer or the embedded DBMS are
provided in EASIE Version 1.0, Volume IV, System Installation and

Maintenance Guide [8].

23

8.0 SUMMARY

The EASIE utilities provide a systematic method of
developing coordinated systems of application programs, via
interfacing or integration, that exchange data through a central
database. Utilities exist for conducting the necessary function
of the integration tasks and the execution tasks. The software
has been documented and is operational in several LaRC-developed
design systems for launch vehicles and spacecraft and has been
used to extend the analysis capabilities of one commercial
product. The recent applications of the EASIE utilities has
revealed areas where improvements can be made in user-

friendliness and functionality, and a version 2.0 has been

defined and is currently under development.

24

Function
Code

BR
AR
LR
PR
BS
BT
LT
PT

BF

BRV

Function Performed

Build relations

Add variables to a relation

List relations

Print a relation

Build a database schema dump
Build a template

List a template

Print a template

Build FORMATTER subroutines

for reading and writing the

database

Build REVIEWER input file

Table I - EASIE Integration Processor Functions.

Function
Code

APEX
DATA
PRLD
PREX
TBLD

WSC

Function Performed

Application Program Execution

Data Modification
Procedure Building
Procedure Execution
Template Building

Workspace Control

Table II - EASIE Execution Processor Functions.

25

26

(a) Close-coupled integration

Data transfer via giobal common or data files

| Program =] Program{—{ Program|

(b) Loose-coupled integration
Data transfer via the central data base

[Prograrn] [Program] [Prograﬂ

Figqure 1. - Program Integration Techniques

(a) Close-coupled interfacing
Data transfer via input files

|Program Program

(b) Loose-coupled interfacing
Data transfer via input files

.Program J
tput
file tpul
file
Input Post-processor
file Post-processor
Pre-processor Data Base

Program

nput
file

=| Pre-processor

Figure 2. - Program Interfacing Techniques

S6-N Q0SS (£861 19Q) £aibuey ySyN

L1861 ATNDF
1-3 8vs-0SS

SUONIUISEs JO] SUCHINIISUL 835 , | NBOd 3iSYI VSYN

QUALITY

ORIGINAL PAGE IS
OF POOR

3 | (wvHO 8) INVN 3NN | 3 INTVA [LBYHD 9L} HVHD 91) x| 3] {dvHDO 8) 0BNAS
n INwN MALINVHYY wo® | s| Lnvig 1vnod JSUNN (snndursep isow eq pioys sieeseyd 9y TSHy) NOISNImIa| 9 3WWN | IN3WND0G
1 | NOUVTRIPILNBIYILY| NOWWOD |.N AVdSIO LISHILOVHVHO 08) NOHLAH IS 30 TI8VIHVA AVHEY » IIEVA | NN
£l A 1L ot 6 8 L 9 H 14 € z 1
INCHd WYHOOHd W3LSAS
NOSHId L1IVINOD NO! LY dgy NOIS3Q
31vQ| S39ovd 40 3IOvd 2SN OGNV NOILINI43a 378VIHVA WHO4 SNIQOD 3ISv3

27

- EASIE Coding Form

Figure 3.

28

CATEGORY 1: MODEL
MODEL INFORMATION

L ! PRESENT VALUE ! NAME { SUBSCRIPT | DESCRIPTION 1 UNITS
1} TEST OF MAKGED F § NAME ! ! MODEL NAME !
21 20,.0000000 | ROTATION ¢ 1 ! MODEL X,¥,2 ROTA | DEGREES
3! 30.0000000 | ! 2 ! |
4! 40,0000000 ! t 3 ! !

M n: modify value (n = lined,name(subscript),or Vine range)

C n : change category (n o 18 or name)

N n : next page (n = + or - pages)

R : reprint page, L n : n linef#'s per page, X n : expand Vinel n

[: end and save mods, Q : quit without saving moas, H : help

CAT : Vst categories, SUB : define review sudset, T : toggle menu
EDIT:
>

Figure 4. - REVIEWER Display of Parameter Data

CATEGORY 3: FACES
CONNECTIVITY OF NODES TO FORM FACES

INDEX ! 1 ! 2 ! 3 ! 4
CcoL ! 1 ! 2 | 3 ! 4
ROW
1! 1! 2! 3! 4
2! 2! 6 ! 7! 3
3! 6 ! 51 8! 7
4! 5 ! 1! 4 1 8
5! 41 3! 7t 8
6! 51! 6 ! 2! 1
M r c : modify value (r = row# or range; ¢ = column#,name(subscript), or range)
C n : change category (n = id or name)
N n : next page (n = + or - pages)
R : reprint page, L n : n rows per page, X r ¢ : expand row# n, column# ¢
S : set columns to be displayed

£ : end and save mods, Q : quit without saving mods, H : help
CAT : list categories, SUB : define review subset, T : toggle menu

Figure 5. - REVIEWER Display of Attribute Data

Reviewer

Reviewer
Files

Figure 6.

(Relatlons)

(Templates) Database

Application
Programs

Rundict RIM

- The Integration Environment

Formatter
Routines

29

30

EASIE
Executive

Procedures

Reviewer (Relations)
(Templates)

"Golden”
Datsbase

Figure 7. - The Execution Environment

Application
Programs

"MAIN MENU"

STATUS:
WORKSPACE : T$

UTIL_IN USE: UTILITY SELECTI

APPLIC_PROG:

REF_PROCFILE:

Fiqure 8.

Figure 9.

PERMANENT MENU:

- HELP

DIRECTORY of CFG's,. TPL's and WS's
INVENTORY of APPL's and PROC's
SYSTEM COMMANDS for PRIMOS

Add a COMMENT to the command log
TOGGLE the MENU PRINT setting
RETURN to the PREVIOUS MENU

QUIT this sequence of menus and
RETURN to the MAIN MENU

- LOGOUT

H
D
1
S
c
T
R
Q
L

<CR> - Clear the screen and relist the menu
UTILITY SELECTION (MAIN)
COMMAND FORMAT

1 - WORKSPACE CONTROL UTILITY ACT UTL
2 - DATA MODIFICATION UTILITY ACT UTL
3 - APPLICATION EXECUTION UTILITY ACT UTL
4 - PROCEDURE EXECUTION UTILITY ACT UTL
5 - PROCEDURE BUILNING UTILITY ACT UTL
6 - TEMPLATE BUILDING UTILITY ACT UTL

ENTER COMMAND:

- Main Executive Menu

WS ACTIVATED ON : 4-DEC-87
>ACT UTL WSC
>T
* TOGGLE TTY PRINT MODE
>D
* DIRECTORY
>1
* INVENTORY
>CP CFG DEFAULT NUDATA
* COPY FROM:TOAIDE:[EXAMPLE.CFG.DEFAULT]
® CARRIED OUT COMMAND: N CFG
>ACT APPL BOX
>RVU 1DB
>Q
® QUIT THIS MENU, RETURN TO MAIN
>ACT UTL APEX
>EX APPL BOX
* EXECUTING BOX
>RVU 0DB
>TY LOG T$RTA4

- Example Log File

REF_CONFIG:

REF_TEMPLATE :

<HSC >
<DATA>
<APEX>
<PREX>
<PBRLD>
<T8LD>

TO:NUDATA

31

32

.‘ .
II User interface lﬁ ,{ Geometryl
- Job Execution Engineeri .
o2 _ gineering Synthesis
Transaction Data Management
Tracer T SMART
User Aids Design Data
Data Dictionary
Program Library
]
Analysis Program Interface
Analysis Programs
Aerodynamics Heating Fit Control Trajectory | | Structures
APAS Miniver Digikon Post PATRAN

Figure 10. - Concept for the Aerospace Vehicle
Interactive Design (AVID) System

Terminal

T g ,
Solid Modelers Mass Properties

[Structure Synthesizers je— e o[Orbial Lifetime)

Q. .
¢

s’;‘,’,‘,’ﬁ;‘g‘;gfs »}e——»{ Orbital Transfer |
. Spacecrall - +{ Rigid Body Controls | N
Mission Subsystem Design |' * »{ Thenmal Analysis] Operations
Planning Finite Element I' le——»[Staticloads __| Analysis
D:rs‘i%n Modelers |« » Siructural Analysis_|
Fle—>] namic Analysis
[Subsysiem Properties j¢—»1] - ysis] R
- fe——» Dynamicloads | —
Nastran [Sensor Properties j¢— r Radiation
File Processor Fabiabie Modak L «——» Deployment Analysis | Analysls
sﬂp;,f,n eSyscl’e:\s »{«——»] Surace Accuracy | and Protection

[Reliability ~le—s{—+[_RF Performance |
[Scheduling ﬁ*—’r Cosls]

‘__.r Secondary (Batch)
Job Execution

gard Dat 'B - - *Stand Alone Programs
opy ata base Currently Under

Data File Mgmt Development

Figure 11. - The Interactive Design and Evaluation
of Advanced Spacecraft (IDEAS) System

Interactive
Piots

ORIGINAL PAGE IS
OF POOR QUALITY

REFERENCES

Wilhite, A,; Johnson, S, C.; and Crisp, V.: "Integrating Computer
Programs For Engineering Analysis and Design," AIAA Paper
No. 83-0597, 21st Aerospace Sciences Meeting, January 1983.

NDate, C. J.: The Systems Programming Series Volume I - AN
INTRODUCTION TO DATABASE SYSTEMS, Third Edition, Addison-
Wesley Publishing Company, February 1982.

Boeing Computer Services Company, "BCS RIM - Relational
Information Management System Version 6.0 User Guide, May 1983.

Jones, Kennie H.; Randall, Donald P.; Stallcup, Scott S. and
Rowell, Lawrence F.: The Environment For Application Software
Integration and Execution (EASIE) Version 1.0. VOLUME II -
PROGRAM INTEGRATION GUIDE. NASA TM-100574, April 1988.

Schwing, J. L; Rowell, L. F.; and Criste, R. E.: The Environment
For Application Software Integration and Execution (EASIE)
Version 1.0 - Volume III - PROGRAM EXECUTION GUIDE," NASA TM-

100575, April 1988,

Structural Dynamics Research Corporation, 1-DEASTM yUSER'S GUIDE,
1986.

Dube, R. P.; and Smith, M., R.: "Managing Geometric Information
With A Datahase Management System", IEEE Computer Graphics and
Applications, V. 3, No. 7, pp. 57-62, October 1983,

Randall, Donald P.; Jones, Kennie H.; and Rowell, Lawrence F.:
The Environment For Application Software Integration and
Execution (EASIE) Version 1.0, VOLUME IV - SYSTEM INSTALLATION

AND MAINTENANCE GUIDE. NASA TM-100576, April 1988.

33

NASA Report Documentation Page

Natonat Aeronautcs and
SACe AgTnstgione

1. Report No. 2. Government Accession No. 3. Recipient’s Catatog No.

NASA TM-100573

4. Title and Subtitle 5. Report Date
The Environment For Application Software Integration March 1989
and Execution (EASIE) Version 1.0, Volume I -

Executive Overview 6. Performing Organization Code

7. Author(s] 8. Performing Organization Report No.

Lawrence F. Rowell and John S. Davis

10. Work Unit No.
506-49-31-01

9. Performing Organization Name and Address

11. Contract or Grant No.
NASA Langley Research Center
Hampton, VA 23665-5225

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address .
Technical Memorandum

National Aeronautics and Space Administration 14 Sponsoring Agency Code
Washington, DC 20546-0001

15, Supplementary Notes

Lawrence F. Rowell, Langley Research Center, Hampton, VA
John S. Davis, Computer Sciences Corporation, Hampton, VA

16. Abstract

The Environment For Application Software Integration and Execution, EASIE,
provides a methodology and a set of software utility programs to ease the task
of coordinating engineering design and analysis codes. EASIE was designed to
meet the needs of conceptual design engineers that face the task of
integrating many stand-alone engineering analysis programs. Using EASIE,
programs are integrated through a relational database management system.

Volume 1, Executive Overview, gives an overview of the functions provided by
EASIE and describes their use. Three operational design systems based upon
the EASIE software are briefly described.

17. Key Words {Suggested by Author(s)) 18. Distribution Statement
EASIE _
E:83:§$ igﬁggﬁgilgg Unclassified - Unlimited
ject Category - 61
Database Management Subject (ategory
Data Dictionary

19. Security Classif. {of this report) 20. Security Ciassif. {of this page) 21. No. of pages 22. Price

Unclassified Unclassified 40 AO3

NASA FORM 1626 OCT 86

